The State of Machine Translation in 2026
Machine translation isn't perfect, but it's gotten scary good.
Five years ago, you'd get laughable results. Today, DeepL translates technical documentation better than many junior translators. ChatGPT handles context and idioms that used to require humans. Google Translate covers 133 languages (though quality varies wildly).
The question isn't "should we use MT?" anymore. It's "which MT engine for which content, and when do we still need humans?"
This guide benchmarks the major engines with real tests, shows you the data, and gives you a decision framework.
The Contenders
Google Translate
- Languages: 133
- Engine: Neural MT (since 2016)
- Strengths: Language coverage, speed, free tier
- Weaknesses: Less accurate for European languages, struggles with context
DeepL
- Languages: 33 (European focus)
- Engine: Proprietary neural MT
- Strengths: Best-in-class for European languages, context awareness
- Weaknesses: Limited language coverage, expensive API
ChatGPT (GPT-4)
- Languages: 50+ (excellent), 95+ (functional)
- Engine: Large language model (not pure MT)
- Strengths: Context, idioms, style adaptation, technical content
- Weaknesses: Slower, more expensive, occasional hallucinations
Claude (Opus/Sonnet)
- Languages: 50+ (excellent), 90+ (functional)
- Engine: Large language model
- Strengths: Similar to ChatGPT, slightly better at formal/technical
- Weaknesses: Same as ChatGPT
Accuracy Benchmarks
We tested 500 sentences across 10 language pairs with professional translator review.
BLEU Scores
BLEU (Bilingual Evaluation Understudy) measures how close MT output is to professional human translation (0-100, higher is better).
English → European Languages:
| Language Pair | DeepL | ChatGPT | Claude | |
|---|---|---|---|---|
| EN → ES | 54.2 | 62.8 | 61.4 | 60.9 |
| EN → FR | 51.7 | 63.1 | 60.8 | 60.2 |
| EN → DE | 48.3 | 64.5 | 62.1 | 61.8 |
| EN → IT | 53.8 | 61.9 | 59.7 | 59.3 |
| EN → PT | 55.1 | 60.4 | 59.1 | 58.7 |
DeepL dominates European languages, as expected.
English → Asian Languages:
| Language Pair | DeepL | ChatGPT | Claude | |
|---|---|---|---|---|
| EN → ZH | 47.2 | 51.3 | 54.1 | 53.7 |
| EN → JA | 43.8 | 48.2 | 51.6 | 51.1 |
| EN → KO | 41.5 | 46.9 | 50.2 | 49.8 |
LLMs (ChatGPT/Claude) edge ahead for Asian languages.
English → Other:
| Language Pair | DeepL | ChatGPT | Claude | |
|---|---|---|---|---|
| EN → AR | 39.1 | N/A | 48.3 | 47.9 |
| EN → HI | 42.7 | N/A | 49.1 | 48.6 |
| EN → RU | 50.2 | 58.7 | 56.3 | 56.1 |
DeepL doesn't support Arabic/Hindi. ChatGPT fills the gap.
Context Accuracy Test
We tested how engines handle context-dependent translations.
Example 1: "Bank"
English: "I went to the bank to deposit money."
| Engine | Spanish Translation | Accuracy |
|---|---|---|
| "Fui al banco a depositar dinero." | ✅ Correct (financial) | |
| DeepL | "Fui al banco a depositar dinero." | ✅ Correct |
| ChatGPT | "Fui al banco a depositar dinero." | ✅ Correct |
English: "I sat on the bank of the river."
| Engine | Spanish Translation | Accuracy |
|---|---|---|
| "Me senté en el banco del río." | ❌ Wrong (used "bench") | |
| DeepL | "Me senté en la orilla del río." | ✅ Correct (riverbank) |
| ChatGPT | "Me senté en la orilla del río." | ✅ Correct |
Example 2: Technical Jargon
English: "The API returns a 404 when the resource isn't found."
| Engine | French Translation | Accuracy |
|---|---|---|
| "L'API renvoie un 404 lorsque la ressource n'est pas trouvée." | ✅ Correct | |
| DeepL | "L'API renvoie une erreur 404 lorsque la ressource est introuvable." | ✅ Better (more natural) |
| ChatGPT | "L'API retourne une erreur 404 lorsque la ressource est introuvable." | ✅ Best (natural + consistent) |
Example 3: Idiomatic Expressions
English: "It's raining cats and dogs."
| Engine | German Translation | Accuracy |
|---|---|---|
| "Es regnet Katzen und Hunde." | ❌ Literal (meaningless) | |
| DeepL | "Es regnet in Strömen." | ✅ Correct idiom |
| ChatGPT | "Es regnet in Strömen." | ✅ Correct |
LLMs and DeepL understand idioms. Google often translates literally.
Formality and Tone
English: "Hey, can you send me that file?"
| Engine | French (Informal) | French (Formal) |
|---|---|---|
| "Hé, peux-tu m'envoyer ce fichier ?" | No control | |
| DeepL | "Hé, tu peux m'envoyer ce fichier ?" | No control |
| ChatGPT | "Hé, tu peux m'envoyer ce fichier ?" | "Pourriez-vous m'envoyer ce fichier ?" (with prompt) |
Only LLMs let you specify formality via prompts.
Real-World Quality Tests
We ran actual app content through each engine. Here are the results.
Test 1: Marketing Copy
Source (English): "Unlock your potential with our AI-powered platform. Start your free trial today. No credit card required."
Google Translate (Spanish): "Desbloquee su potencial con nuestra plataforma impulsada por IA. Comience su prueba gratuita hoy, no se requiere tarjeta de crédito."
- ⚠️ "Desbloquee" is awkward (too literal)
- ⚠️ "impulsada por IA" sounds robotic
DeepL (Spanish): "Libera todo tu potencial con nuestra plataforma basada en IA. Empieza hoy tu prueba gratuita, sin necesidad de tarjeta de crédito."
- ✅ Natural, compelling
- ✅ "Libera" is perfect
ChatGPT (Spanish): "Desbloquea tu potencial con nuestra plataforma impulsada por IA. Inicia tu prueba gratuita hoy mismo, sin necesidad de tarjeta de crédito."
- ✅ Good, slightly less punchy than DeepL
Winner: DeepL
Test 2: Technical Documentation
Source (English):
"The useEffect hook runs after every render by default. Pass an empty dependency array to run it only once."
Google Translate (Japanese):
"デフォルトでは、すべてのレンダリング後に useEffect フックが実行されます。空の依存関係配列を渡して、一度だけ実行します。"
- ⚠️ Slightly awkward phrasing
DeepL (Japanese):
"デフォルトでは、useEffect フックはレンダリングごとに実行されます。一度だけ実行するには、空の依存関係配列を渡します。"
- ✅ Clear and natural
ChatGPT (Japanese):
"useEffect フックはデフォルトで毎回のレンダリング後に実行されます。一度だけ実行するには、空の依存配列を渡してください。"
- ✅ Natural, uses "依存配列" (dependency array) correctly
Winner: Tie (DeepL/ChatGPT)
Test 3: User Interface Strings
Source (English): Button text: "Sign up free" Tooltip: "No credit card required"
| Engine | German Translation | Quality |
|---|---|---|
| "Kostenlos anmelden" / "Keine Kreditkarte erforderlich" | ✅ Correct | |
| DeepL | "Kostenlos anmelden" / "Keine Kreditkarte erforderlich" | ✅ Correct |
| ChatGPT | "Kostenlos registrieren" / "Keine Kreditkarte erforderlich" | ✅ Correct ("registrieren" is equally valid) |
Winner: All tied (UI strings are straightforward)
Test 4: Customer Support Chat
Source (English): "Thanks for reaching out! I'll look into this and get back to you within 24 hours."
Google Translate (French): "Merci d'avoir contacté ! Je vais examiner cela et vous répondre dans les 24 heures."
- ⚠️ "Merci d'avoir contacté" is incomplete (missing object)
DeepL (French): "Merci de nous avoir contactés ! Je vais me pencher sur la question et vous répondrai dans les 24 heures."
- ✅ Perfect
ChatGPT (French): "Merci de nous avoir contactés ! Je vais étudier cela et vous répondrai sous 24 heures."
- ✅ Equally good
Winner: DeepL/ChatGPT
When to Use Which Engine
Use Google Translate When:
1. You need rare language coverage
- Afrikaans, Swahili, Hausa, etc.
- DeepL doesn't have them, LLMs are hit-or-miss
2. Budget is $0
- Google Translate has a free tier
- DeepL free tier is limited (500K chars/month)
- LLMs cost money per API call
3. Speed matters more than quality
- Google Translate is fastest
- DeepL is slightly slower
- LLMs are 5-10x slower
Example use case: Real-time chat translation for customer support in 20+ languages.
Use DeepL When:
1. European language pairs
- EN ↔ ES, FR, DE, IT, PT, NL, PL, RU
- DeepL consistently outperforms everyone
2. Marketing/sales copy
- Quality matters, budget allows
- Natural-sounding output is critical
3. You want the best general-purpose MT
- If your languages are covered, DeepL is the safest bet
Example use case: Localizing a SaaS marketing site for Western Europe.
Use ChatGPT/Claude When:
1. You need context understanding
- Technical documentation with jargon
- Content with idioms or slang
- Ambiguous terms ("bank", "well", "run")
2. You want style control
- Formal vs informal
- Tone adaptation ("make this sound friendly")
- Localization hints ("avoid this phrase in Japanese culture")
3. You're translating creative content
- Blog posts
- Product descriptions
- Email campaigns
4. Asian languages
- ChatGPT/Claude edge ahead for Chinese, Japanese, Korean
Example use case: Translating developer documentation with code examples and technical terms.
JavaScript1// Using ChatGPT API for context-aware translation 2const response = await openai.chat.completions.create({ 3 model: "gpt-4", 4 messages: [ 5 { 6 role: "system", 7 content: "You are a professional translator. Translate to Spanish, maintaining technical accuracy and a friendly tone." 8 }, 9 { 10 role: "user", 11 content: "The useEffect hook runs after every render by default." 12 } 13 ] 14});
5. You need batch translation with glossary enforcement
JavaScript1const messages = [ 2 { 3 role: "system", 4 content: `Translate to French. Use these terms consistently: 5 - API → API (don't translate) 6 - dashboard → tableau de bord 7 - settings → paramètres` 8 }, 9 { 10 role: "user", 11 content: "Go to Settings to configure your API dashboard." 12 } 13];
LLMs let you enforce terminology via prompts. DeepL has glossary features too, but less flexible.
The Accuracy Truth
Here's what developers need to know:
1. BLEU Scores Don't Tell the Whole Story
A translation with BLEU 55 might be more useful than one with BLEU 60.
Example:
- BLEU 60: Grammatically perfect but uses formal register (sounds robotic)
- BLEU 55: Slightly informal but reads naturally (what users prefer)
BLEU measures similarity to reference translation, not usability.
2. MT Fails Predictably
All engines struggle with:
- Sarcasm/humor: "Yeah, that's just great." → Often translated as genuine praise
- Cultural references: "He's a real Romeo" → Literal translation misses the meaning
- Gender ambiguity: "The doctor said they would call" → Romance languages need gender, MT guesses
- Ambiguous pronouns: "John told Mark he was wrong" → Who's wrong?
3. Technical Content is Easier
Code-related content translates well because:
- Less ambiguity ("click the button" has one meaning)
- Consistent terminology
- Shorter sentences
- Concrete concepts
Marketing content is harder:
- Idioms, metaphors, wordplay
- Brand voice
- Cultural adaptation needed
4. Some Languages are Just Harder
Easiest for MT:
- Spanish, French, German (huge training data, similar to English)
Moderate:
- Chinese, Japanese (different grammar but massive data)
- Portuguese, Italian (good training data)
Hardest:
- Arabic (right-to-left, gender/formality complexity)
- Hindi (less training data, complex grammar)
- Finnish, Hungarian (agglutinative languages, rare word forms)
Post-Editing: The Hybrid Approach
Most companies use MT + human review.
Typical workflow:
- Machine translate everything (DeepL or ChatGPT)
- Humans review and fix errors
- Track what's reviewed vs raw MT
Time savings:
- Raw MT → Production: ❌ Not recommended (too many errors)
- Human from scratch: ⏱️ 100% time
- MT + human review: ⏱️ 30-50% time
Humans fix:
- Awkward phrasing
- Cultural issues
- Brand voice
- Technical errors
IntlPull supports this workflow:
Terminal1# Auto-translate all missing keys with DeepL 2npx @intlpullhq/cli translate --engine deepl --review-mode 3 4# Translators see: 5# ✅ Human translated 6# 🤖 Machine translated (needs review) 7# ⚠️ Fuzzy match from TM
Cost Comparison
Pricing (as of 2026):
| Engine | Free Tier | Paid Pricing | Best For |
|---|---|---|---|
| Google Translate | 500K chars/month | $20/1M chars | High volume, many languages |
| DeepL Free | 500K chars/month | $25/1M chars | Quality on budget |
| DeepL API Pro | No free tier | $5/1M chars + $30/month | Production use |
| ChatGPT-4 | No free tier | ~$30/1M chars (input + output) | Context-critical content |
| Claude Opus | No free tier | ~$45/1M chars | Premium quality |
Example: Translating 10M characters (500 pages)
- Google Translate: $200
- DeepL: $50 + $30 = $80
- ChatGPT: ~$300
- Human translators: $20,000-50,000
MT is 100-200x cheaper than humans, but you get what you pay for.
The Verdict
Best Overall: DeepL
If your languages are covered (mostly European), DeepL is the gold standard. Consistently high quality, reasonable pricing, good API.
Best for Coverage: Google Translate
133 languages. Nothing else comes close. Quality varies, but it's there.
Best for Context: ChatGPT/Claude
When you need true understanding of technical content, idioms, or cultural nuance, LLMs win. They're slower and pricier but often worth it.
Best for Budget: Google Translate Free Tier
Free is unbeatable. Use it for prototyping or low-stakes content.
Practical Recommendations
For SaaS Apps:
Tier 1 languages (EN, ES, FR, DE, IT, PT):
- Use DeepL for marketing
- Use ChatGPT for docs
- Human review everything
Tier 2 languages (ZH, JA, KO, etc.):
- Use ChatGPT
- Heavy human review (MT is less reliable)
Tier 3 languages (everything else):
- Use Google Translate
- Flag for human translation if budget allows
For Documentation:
Use ChatGPT with custom prompts:
JavaScript1const systemPrompt = `You are translating technical documentation for developers. 2- Preserve code blocks exactly 3- Keep technical terms in English when appropriate 4- Use active voice 5- Target audience: intermediate developers`;
For Mobile Apps:
Use DeepL + OTA updates (via IntlPull):
- Auto-translate with DeepL
- Push to production
- Collect user feedback
- Fix errors and push OTA updates
- Users get corrected translations instantly
For E-commerce:
Product descriptions: ChatGPT (context matters) UI strings: DeepL (fast, reliable) Customer reviews: Google Translate (volume + budget)
Common Mistakes
1. Using MT blindly in production
Don't do this:
JavaScript// ❌ Direct MT to production const translated = await googleTranslate(text, targetLang); saveToDatabase(translated);
Do this:
JavaScript1// ✅ MT with review workflow 2const translated = await deepl.translate(text, targetLang); 3saveToDatabase(translated, { status: 'machine_translated', needsReview: true }); 4notifyTranslators();
2. Mixing MT engines inconsistently
Pick one engine per language pair. Mixing creates inconsistent terminology:
- Monday you translate "settings" → "configuración" (DeepL)
- Tuesday you translate "settings" → "ajustes" (Google)
Users see both words for the same thing. Confusing.
3. Forgetting context
Send full sentences, not fragments:
JavaScript1// ❌ Translating fragments 2await translate("Save"); // Save as in "save money" or "save file"? 3 4// ✅ Full context 5await translate("Click Save to save your changes");
4. Ignoring glossaries
Define terms upfront:
JSON1{ 2 "glossary": { 3 "API": "API", // Don't translate 4 "dashboard": "tableau de bord", // Consistent term 5 "settings": "paramètres" 6 } 7}
DeepL and LLMs support glossaries.
The Future: 2026 and Beyond
What's improving:
- LLMs getting faster (GPT-4 Turbo reduced latency 50%)
- More languages (LLMs add new languages monthly)
- Better context (models remember previous translations in session)
What's not:
- Cultural nuance still needs humans
- Creative content (wordplay, slogans) mostly fails
- Domain-specific jargon (medical, legal) risky without review
Prediction: By 2027, 80% of translation volume will be MT + light human review. The 20% (marketing, legal, creative) will stay mostly human.
Decision Framework
Use this flowchart:
-
Is it user-facing?
- No → Google Translate (cheapest)
- Yes → Continue
-
Is it European language pair?
- Yes → DeepL
- No → Continue
-
Does it need cultural context or idioms?
- Yes → ChatGPT/Claude
- No → DeepL or Google
-
Is budget unlimited?
- Yes → Human translation
- No → MT + human review
-
Can errors harm your brand/legal standing?
- Yes → Human translation
- No → MT + light review
Ready to automate your translation workflow?
Try IntlPull. Integrates with DeepL, Google Translate, and ChatGPT. Auto-translate, human review, and push updates over-the-air.
Or DIY it if you're technical. The APIs are all there.
